Impute missing values/NAs with KNN
Usage
imputeKNN(
obj,
rowmax = 0.5,
colmax = 0.8,
k = 10,
maxp = 1500,
in.place = TRUE,
drop.sparse.samps = TRUE,
assay = c("array", "atac", "bisulfite")
)
Arguments
- obj
Input SummarizedExperiment object
- rowmax
Maximum fraction of NAs that can exist in a row
- colmax
Maximum fraction of NAs that can exist in a column/sample
- k
Number of neighbors to be used in the imputation
- maxp
Largest block of regions/loci imputed using KNN
- in.place
Whether to modify the Beta/counts in place (default: TRUE)
- drop.sparse.samps
Whether to drop samples that are too sparse (default: TRUE)
- assay
The type of assay ("array", "bisulfite")
Examples
if (requireNamespace("minfi", quietly = TRUE)) {
data("array_data_chr14", package = "compartmap")
#impute
imputed <- imputeKNN(array.data.chr14, assay = "array")
}
#> Dropping samples with >80% NAs.
#> Imputing missing data with kNN.
#> Cluster size 12972 broken into 7075 5897
#> Cluster size 7075 broken into 5100 1975
#> Cluster size 5100 broken into 1885 3215
#> Cluster size 1885 broken into 687 1198
#> Done cluster 687
#> Done cluster 1198
#> Done cluster 1885
#> Cluster size 3215 broken into 1144 2071
#> Done cluster 1144
#> Cluster size 2071 broken into 1250 821
#> Done cluster 1250
#> Done cluster 821
#> Done cluster 2071
#> Done cluster 3215
#> Done cluster 5100
#> Cluster size 1975 broken into 1292 683
#> Done cluster 1292
#> Done cluster 683
#> Done cluster 1975
#> Done cluster 7075
#> Cluster size 5897 broken into 2293 3604
#> Cluster size 2293 broken into 995 1298
#> Done cluster 995
#> Done cluster 1298
#> Done cluster 2293
#> Cluster size 3604 broken into 2213 1391
#> Cluster size 2213 broken into 1116 1097
#> Done cluster 1116
#> Done cluster 1097
#> Done cluster 2213
#> Done cluster 1391
#> Done cluster 3604
#> Done cluster 5897