Both iscream and Rsamtools can be used to query records from tabixed BED files in R. Here we compare their usability and performance using the methscan dataset.
This vignette uses mouse WGBS data from methscan as in the Plotting TSS profiles tutorial and mouse promoter regions. Running it requires downloading 18MB of BED files and tabix indices from this Zenodo record: https://zenodo.org/records/14733834
methscan_zip_path <- tempfile("methscan")
methscan_dir <- tempdir()
download.file(
"https://zenodo.org/records/14733834/files/methscan_data.zip",
destfile = methscan_zip_path
)
unzip(methscan_zip_path, exdir = methscan_dir)
iscream normally uses htslib to query BED files and store the data in
memory. However, iscream’s tabix
function can use the tabix
executable to make tabix queries because the shell program’s
stream-to-file approach is faster than allocating and storing strings in
memory. By default, the "tabix.method"
option is set to
“shell” and iscream’s tabix
will look for the tabix
executable, falling back to using htslib only if it’s not found. Here,
the "tabix.method"
option is set to “htslib” to make fair
comparisons between Rsamtools and iscream since scanTabix
does not use the executable, but stores the strings in memory.
## iscream using 1 thread by default but parallelly::availableCores() detects 16 possibly available threads. See `?set_threads` for information on multithreading before trying to use more.
Using scanTabix
requires the input regions to be
GRanges
. iscream::tabix
accepts strings, data
frames and GRanges.
library(data.table)
library(GenomicRanges) |> suppressPackageStartupMessages()
library(Rsamtools) |> suppressPackageStartupMessages()
library(microbenchmark)
library(parallel)
library(ggplot2)
methscan_files <- list.files(
data_dir,
full.names = T,
pattern = "*.cov.gz$"
)
mouse_promoters <- fread(paste0(data_dir, "/mouse_promoters.bed"), col.names = c("chr", "start", "end"))
mouse_promoters.gr <- GRanges(mouse_promoters)
One file
tabix
with raw = TRUE
and
scanTabix
produce a list of unparsed or raw strings. The
result of both are identical.
bench_1_raw <- microbenchmark(
`rsamtools 1 file raw` = rq <- scanTabix(methscan_files[1], param = mouse_promoters.gr),
`iscream 1 file raw` = iq <- tabix(methscan_files[1], mouse_promoters, raw = TRUE),
times = 3
)
bench_1_raw
## Unit: milliseconds
## expr min lq mean median uq
## rsamtools 1 file raw 2058.93989 2064.65614 2114.46048 2070.37240 2142.22078
## iscream 1 file raw 77.67272 80.20395 81.12257 82.73518 82.84749
## max neval
## 2214.06916 3
## 82.95981 3
autoplot(bench_1_raw)
## Warning: `aes_string()` was deprecated in ggplot2 3.0.0.
## ℹ Please use tidy evaluation idioms with `aes()`.
## ℹ See also `vignette("ggplot2-in-packages")` for more information.
## ℹ The deprecated feature was likely used in the microbenchmark package.
## Please report the issue at <https://github.com/joshuaulrich/microbenchmark/issues/>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated.

tabix vs scanTabix raw string output on 1 file
iq[1:5]
## $`1:3669498-3673498`
## character(0)
##
## $`1:4407241-4411241`
## character(0)
##
## $`1:4494413-4498413`
## character(0)
##
## $`1:4783739-4787739`
## [1] "1\t4785488\t4785488\t0.000000\t0\t2"
## [2] "1\t4785513\t4785513\t0.000000\t0\t2"
## [3] "1\t4785522\t4785522\t0.000000\t0\t2"
## [4] "1\t4785533\t4785533\t0.000000\t0\t2"
## [5] "1\t4786780\t4786780\t100.000000\t1\t0"
## [6] "1\t4786886\t4786886\t100.000000\t1\t0"
## [7] "1\t4786958\t4786958\t100.000000\t1\t0"
##
## $`1:4805823-4809823`
## [1] "1\t4806176\t4806176\t100.000000\t1\t0"
## [2] "1\t4806221\t4806221\t100.000000\t1\t0"
## [3] "1\t4807572\t4807572\t0.000000\t0\t1"
## [4] "1\t4807669\t4807669\t0.000000\t0\t2"
## [5] "1\t4807682\t4807682\t0.000000\t0\t2"
## [6] "1\t4807872\t4807872\t0.000000\t0\t1"
## [7] "1\t4807890\t4807890\t0.000000\t0\t1"
## [8] "1\t4807940\t4807940\t0.000000\t0\t1"
## [9] "1\t4807950\t4807950\t0.000000\t0\t1"
all.equal(iq, rq)
## [1] TRUE
Multiple files
tabix
can also take multiple files in the same call. It
returns the raw strings, but each input file is a list of it’s own.
scanTabix
does not support this.
bench_30_raw <- microbenchmark(
`iscream 30 files raw` = iq <- tabix(methscan_files, mouse_promoters, raw = TRUE),
times = 3
)
bench_30_raw
## Unit: seconds
## expr min lq mean median uq max
## iscream 30 files raw 1.758214 1.875702 2.061496 1.993191 2.213138 2.433085
## neval
## 3
names(iq)
## [1] "cell_01" "cell_02" "cell_03" "cell_04" "cell_05" "cell_06" "cell_07"
## [8] "cell_08" "cell_09" "cell_10" "cell_11" "cell_12" "cell_13" "cell_14"
## [15] "cell_15" "cell_16" "cell_17" "cell_18" "cell_19" "cell_20" "cell_21"
## [22] "cell_22" "cell_23" "cell_24" "cell_25" "cell_26" "cell_27" "cell_28"
## [29] "cell_29" "cell_30"
iq[["cell_01"]][1:5]
## $`1:3669498-3673498`
## character(0)
##
## $`1:4407241-4411241`
## character(0)
##
## $`1:4494413-4498413`
## character(0)
##
## $`1:4783739-4787739`
## [1] "1\t4785488\t4785488\t0.000000\t0\t2"
## [2] "1\t4785513\t4785513\t0.000000\t0\t2"
## [3] "1\t4785522\t4785522\t0.000000\t0\t2"
## [4] "1\t4785533\t4785533\t0.000000\t0\t2"
## [5] "1\t4786780\t4786780\t100.000000\t1\t0"
## [6] "1\t4786886\t4786886\t100.000000\t1\t0"
## [7] "1\t4786958\t4786958\t100.000000\t1\t0"
##
## $`1:4805823-4809823`
## [1] "1\t4806176\t4806176\t100.000000\t1\t0"
## [2] "1\t4806221\t4806221\t100.000000\t1\t0"
## [3] "1\t4807572\t4807572\t0.000000\t0\t1"
## [4] "1\t4807669\t4807669\t0.000000\t0\t2"
## [5] "1\t4807682\t4807682\t0.000000\t0\t2"
## [6] "1\t4807872\t4807872\t0.000000\t0\t1"
## [7] "1\t4807890\t4807890\t0.000000\t0\t1"
## [8] "1\t4807940\t4807940\t0.000000\t0\t1"
## [9] "1\t4807950\t4807950\t0.000000\t0\t1"
scanTabix(methscan_files, param = GRanges(mouse_promoters))
## Error in h(simpleError(msg, call)): error in evaluating the argument 'file' in selecting a method for function 'scanTabix': 'file' must be length 1
Parsing records into a data frame
A parsed data frame is more useful than a list of raw strings - use
tabix()
instead of tabix_raw()
. For
scanTabix
, this custom function parses the list of strings
to make a similar data frame:
rtbx <- function(bed) {
q <- scanTabix(bed, param = GRanges(mouse_promoters)) |>
lapply(strsplit, split = "\t") |>
Filter(function(i) length(i) != 0, x = _) |>
unlist(recursive = FALSE) |>
do.call(rbind, args = _) |>
as.data.table() |>
setnames(c("chr", "start", "end", paste0("V", 1:3)))
q
}
bench_1_df <- microbenchmark(
`rsamtools 1 file data frame` = rq <- rtbx(methscan_files[1]),
`iscream 1 file data frame` = iq <- tabix(methscan_files[1], mouse_promoters),
times = 3
)
rq
## chr start end V1 V2 V3
## <char> <char> <char> <char> <char> <char>
## 1: 1 4785488 4785488 0.000000 0 2
## 2: 1 4785513 4785513 0.000000 0 2
## 3: 1 4785522 4785522 0.000000 0 2
## 4: 1 4785533 4785533 0.000000 0 2
## 5: 1 4786780 4786780 100.000000 1 0
## ---
## 79900: X 168673566 168673566 0.000000 0 1
## 79901: X 168673577 168673577 0.000000 0 1
## 79902: X 168674670 168674670 0.000000 0 1
## 79903: X 168675047 168675047 0.000000 0 1
## 79904: X 169318831 169318831 100.000000 1 0
iq
## chr start end V1 V2 V3
## <char> <int> <int> <num> <int> <int>
## 1: 1 4785488 4785488 0 0 2
## 2: 1 4785513 4785513 0 0 2
## 3: 1 4785522 4785522 0 0 2
## 4: 1 4785533 4785533 0 0 2
## 5: 1 4786780 4786780 100 1 0
## ---
## 79900: X 168673566 168673566 0 0 1
## 79901: X 168673577 168673577 0 0 1
## 79902: X 168674670 168674670 0 0 1
## 79903: X 168675047 168675047 0 0 1
## 79904: X 169318831 169318831 100 1 0
all.equal(iq, rq, check.attributes = F)
## [1] "Datasets have different column modes. First 3: start(numeric!=character) end(numeric!=character) V1(numeric!=character)"
The column types are different but the data is identical.
bench_1_df
## Unit: milliseconds
## expr min lq mean median uq
## rsamtools 1 file data frame 2011.4551 2233.9409 2698.4112 2456.427 3041.8892
## iscream 1 file data frame 137.4999 139.2765 143.6715 141.053 146.7572
## max neval
## 3627.3517 3
## 152.4614 3
autoplot(bench_1_df)

tabix vs scanTabix parsed data frame from 1 file
Multiple files as data frame
We can try to query multiple BED files using Rsamtools with this function that 8 cores like iscream does:
partbx <- function(bedfiles) {
mclapply(
methscan_files,
function(bed) {
query <- rtbx(bed)[, file := tools::file_path_sans_ext(basename(bed), compression = TRUE)][]
setnames(query, c("chr", "start", "end", "beta", "M", "U", "file"))
query
},
mc.cores = 8
) |>
rbindlist()
}
bench_30_df <- microbenchmark(
`rsamtools 30 file data frame` = rq <- partbx(methscan_files[1]),
`iscream 30 file data frame` = iq <- tabix(methscan_files[1], mouse_promoters, col.names = c("beta", "M", "U")),
times = 3
)
bench_30_df
## Unit: seconds
## expr min lq mean median uq
## rsamtools 30 file data frame 25.998420 27.379231 28.280409 28.76004 29.421403
## iscream 30 file data frame 1.084235 1.401823 1.628902 1.71941 1.901235
## max neval
## 30.08276 3
## 2.08306 3
autoplot(bench_30_df)

tabix vs scanTabix parsed data frame from 30 files
All benchmarks
bench_all <- rbind(bench_1_raw, bench_30_raw, bench_1_df, bench_30_raw, bench_30_df)
bench.dt <- as.data.table(bench_all)[, .(
time = time / 1000000,
package = fifelse(grepl("iscream", expr), "iscream", "rsamtools"),
files = fifelse(grepl("1", expr), 1, 30),
data.frame = fifelse(grepl("raw", expr), FALSE, TRUE)
)][,
package := paste(package, fifelse(data.frame, "df", "raw"))
]
plt <- ggplot(bench.dt, aes(x = package, y = time, color = as.factor(files))) +
geom_boxplot() +
labs(x = "Package and return type") +
scale_color_discrete(name = "File count") +
theme_minimal()
Runtime
plt + labs(y = "Runtime (milliseconds)")

Comparing all benchmarked iscream and Rsamtools querying runtimes
Runtime log scale
plt + scale_y_log10() + labs(y = "log10 Runtime (milliseconds)")

log10 scaled runtime of all benchmarks run
Session info
## R version 4.5.1 (2025-06-13)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.3 LTS
##
## Matrix products: default
## BLAS/LAPACK: /nix/store/g5b7qnbhjmiac5q4jb5yvahy6pysd88g-blas-3/lib/libblas.so.3; LAPACK version 3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/Detroit
## tzcode source: system (glibc)
##
## attached base packages:
## [1] parallel stats4 stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] ggplot2_4.0.0 microbenchmark_1.5.0 Rsamtools_2.25.3
## [4] Biostrings_2.77.2 XVector_0.49.1 GenomicRanges_1.61.5
## [7] Seqinfo_0.99.2 IRanges_2.43.5 S4Vectors_0.47.4
## [10] BiocGenerics_0.55.1 generics_0.1.4 data.table_1.17.8
## [13] iscream_0.99.5 BiocFileCache_2.99.6 dbplyr_2.5.1
## [16] colorout_1.3-3
##
## loaded via a namespace (and not attached):
## [1] rappdirs_0.3.3 bitops_1.0-9 RSQLite_2.4.3
## [4] lattice_0.22-7 magrittr_2.0.4 RColorBrewer_1.1-3
## [7] evaluate_1.0.5 grid_4.5.1 fastmap_1.2.0
## [10] blob_1.2.4 Matrix_1.7-4 DBI_1.2.3
## [13] purrr_1.1.0 scales_1.4.0 codetools_0.2-20
## [16] httr2_1.2.1 cli_3.6.5 rlang_1.1.6
## [19] crayon_1.5.3 parallelly_1.45.1 bit64_4.6.0-1
## [22] withr_3.0.2 cachem_1.1.0 tools_4.5.1
## [25] BiocParallel_1.43.4 memoise_2.0.1 dplyr_1.1.4
## [28] filelock_1.0.3 curl_7.0.0 vctrs_0.6.5
## [31] R6_2.6.1 lifecycle_1.0.4 stringfish_0.17.0
## [34] bit_4.6.0 pkgconfig_2.0.3 gtable_0.3.6
## [37] RcppParallel_5.1.11-1 pillar_1.11.1 glue_1.8.0
## [40] Rcpp_1.1.0 xfun_0.53 tibble_3.3.0
## [43] tidyselect_1.2.1 knitr_1.50 farver_2.1.2
## [46] labeling_0.4.3 compiler_4.5.1 S7_0.2.0