
Summarize information over genomic regions from any BED file
Source:R/summarize_regions.R
summarize_regions.Rd
Run summarizing functions on BED file records across genomic regions.
Parallelized across files using threads from the "iscream.threads"
option.
Usage
summarize_regions(
bedfiles,
regions,
columns,
col_names = NULL,
fun = "all",
feature_col = NULL,
set_region_rownames = FALSE,
nthreads = NULL
)
Arguments
- bedfiles
A vector of BED file paths
- regions
A vector, data frame or GenomicRanges of genomic regions. See details.
- columns
A vector of indices of the numeric columns to be summarized
- col_names
A vector of names to use for
columns
in the output- fun
Function(s) to apply over the region. See details.
- feature_col
Column name of the input
regions
data frame containing a name for each genomic region. Set only if the using a data frame as the input regions format. See details.- set_region_rownames
Use the region strings as the returned data frame's rownames. Can be useful if you have a named regions and want both the regions strings rownames and the feature names. See details.
- nthreads
Set number of threads to use overriding the
"iscream.threads"
option. See?set_threads
for more information.
Supported functions
Sum:
"sum"
Mean:
"mean"
Median:
"median"
Standard deviation:
"stddev"
Variance:
"variance"
Minimum:
"min"
Maximum:
"max"
Range:
"range"
No. of records in the region:
"count"
The summarizing computations are backed by the Armadillo library. See https://arma.sourceforge.net/docs.html#stats_fns for futher details on the supported functions
Using feature identifiers
regions
may be string vector in the form "chr:start-end", a GRanges
object or a data frame with "chr", "start", and "end" columns. The feature
column of the output will contain a "chr:start-end" identifier for each
summarized region. To use other identifiers, like a gene name for a region
instead of the coordinates, set the names of the vector or GRanges to those
identifiers. These names will be used instead of the genomic region string
to describe each feature in the output dataframe. If regions
is a data
frame make an additional column with the identifiers and pass that column
name to feature_col
. See examples.
Examples
bedfiles <- system.file("extdata", package = "iscream") |>
list.files(pattern = "[a|b|c|d].bed.gz$", full.names = TRUE)
# examine the bedfiles
colnames <- c("chr", "start", "end", "beta", "coverage")
lapply(bedfiles, function(i) knitr::kable(read.table(i, col.names = colnames)))
#> [[1]]
#>
#>
#> |chr | start| end| beta| coverage|
#> |:----|-----:|---:|----:|--------:|
#> |chr1 | 0| 2| 1.0| 1|
#> |chr1 | 2| 4| 1.0| 1|
#> |chr1 | 4| 6| 0.0| 2|
#> |chr1 | 6| 8| 0.0| 1|
#> |chr1 | 8| 10| 0.5| 2|
#> |chr1 | 10| 12| 1.0| 2|
#> |chr1 | 12| 14| 1.0| 3|
#>
#> [[2]]
#>
#>
#> |chr | start| end| beta| coverage|
#> |:----|-----:|---:|----:|--------:|
#> |chr1 | 0| 2| 0| 2|
#> |chr1 | 4| 6| 1| 2|
#> |chr1 | 6| 8| 1| 1|
#> |chr1 | 10| 12| 0| 2|
#> |chr1 | 12| 14| 1| 1|
#>
#> [[3]]
#>
#>
#> |chr | start| end| beta| coverage|
#> |:----|-----:|---:|----:|--------:|
#> |chr1 | 2| 4| 1| 2|
#> |chr1 | 6| 8| 0| 2|
#> |chr1 | 8| 10| 1| 1|
#>
#> [[4]]
#>
#>
#> |chr | start| end| beta| coverage|
#> |:----|-----:|---:|----:|--------:|
#> |chr1 | 0| 2| 1.0| 1|
#> |chr1 | 2| 4| 1.0| 2|
#> |chr1 | 6| 8| 0.0| 1|
#> |chr1 | 8| 10| 0.5| 2|
#> |chr1 | 12| 14| 1.0| 1|
#>
# make a vector of regions
regions <- c("chr1:1-6", "chr1:7-10", "chr1:11-14")
summarize_regions(bedfiles, regions, columns = c(4, 5), col_names = c("beta", "cov"))
#> [13:21:21.074914] [iscream::summarize_regions] [info] Summarizing 3 regions from 4 bedfiles
#> [13:21:21.074929] [iscream::summarize_regions] [info] using sum, mean, median, stddev, variance, min, max, range, count
#> [13:21:21.074932] [iscream::summarize_regions] [info] with columns 4, 5 as beta, cov
#> feature file beta.sum cov.sum beta.mean cov.mean beta.median cov.median
#> 1 chr1:1-6 a 2.0 4 0.6666667 1.333333 1.00 1.0
#> 2 chr1:7-10 a 0.5 3 0.2500000 1.500000 0.25 1.5
#> 3 chr1:11-14 a 2.0 5 1.0000000 2.500000 1.00 2.5
#> 4 chr1:1-6 b 1.0 4 0.5000000 2.000000 0.50 2.0
#> 5 chr1:7-10 b 1.0 1 1.0000000 1.000000 1.00 1.0
#> 6 chr1:11-14 b 1.0 3 0.5000000 1.500000 0.50 1.5
#> 7 chr1:1-6 c 1.0 2 1.0000000 2.000000 1.00 2.0
#> 8 chr1:7-10 c 1.0 3 0.5000000 1.500000 0.50 1.5
#> 9 chr1:11-14 c NA NA NA NA NA NA
#> 10 chr1:1-6 d 2.0 3 1.0000000 1.500000 1.00 1.5
#> 11 chr1:7-10 d 0.5 3 0.2500000 1.500000 0.25 1.5
#> 12 chr1:11-14 d 1.0 1 1.0000000 1.000000 1.00 1.0
#> beta.stddev cov.stddev beta.variance cov.variance beta.min cov.min beta.max
#> 1 0.5773503 0.5773503 0.3333333 0.3333333 0 1 1.0
#> 2 0.3535534 0.7071068 0.1250000 0.5000000 0 1 0.5
#> 3 0.0000000 0.7071068 0.0000000 0.5000000 1 2 1.0
#> 4 0.7071068 0.0000000 0.5000000 0.0000000 0 2 1.0
#> 5 0.0000000 0.0000000 0.0000000 0.0000000 1 1 1.0
#> 6 0.7071068 0.7071068 0.5000000 0.5000000 0 1 1.0
#> 7 0.0000000 0.0000000 0.0000000 0.0000000 1 2 1.0
#> 8 0.7071068 0.7071068 0.5000000 0.5000000 0 1 1.0
#> 9 NA NA NA NA NA NA NA
#> 10 0.0000000 0.7071068 0.0000000 0.5000000 1 1 1.0
#> 11 0.3535534 0.7071068 0.1250000 0.5000000 0 1 0.5
#> 12 0.0000000 0.0000000 0.0000000 0.0000000 1 1 1.0
#> cov.max beta.range cov.range count
#> 1 2 1.0 1 3
#> 2 2 0.5 1 2
#> 3 3 0.0 1 2
#> 4 2 1.0 0 2
#> 5 1 0.0 0 1
#> 6 2 1.0 1 2
#> 7 2 0.0 0 1
#> 8 2 1.0 1 2
#> 9 NA NA NA NA
#> 10 2 0.0 1 2
#> 11 2 0.5 1 2
#> 12 1 0.0 0 1
# select functions
summarize_regions(
bedfiles,
regions,
fun = c("mean", "stddev"),
columns = c(4, 5),
col_names = c("beta", "cov")
)
#> [13:21:21.088688] [iscream::summarize_regions] [info] Summarizing 3 regions from 4 bedfiles
#> [13:21:21.088698] [iscream::summarize_regions] [info] using mean, stddev
#> [13:21:21.088701] [iscream::summarize_regions] [info] with columns 4, 5 as beta, cov
#> feature file beta.mean cov.mean beta.stddev cov.stddev
#> 1 chr1:1-6 a 0.6666667 1.333333 0.5773503 0.5773503
#> 2 chr1:7-10 a 0.2500000 1.500000 0.3535534 0.7071068
#> 3 chr1:11-14 a 1.0000000 2.500000 0.0000000 0.7071068
#> 4 chr1:1-6 b 0.5000000 2.000000 0.7071068 0.0000000
#> 5 chr1:7-10 b 1.0000000 1.000000 0.0000000 0.0000000
#> 6 chr1:11-14 b 0.5000000 1.500000 0.7071068 0.7071068
#> 7 chr1:1-6 c 1.0000000 2.000000 0.0000000 0.0000000
#> 8 chr1:7-10 c 0.5000000 1.500000 0.7071068 0.7071068
#> 9 chr1:11-14 c NA NA NA NA
#> 10 chr1:1-6 d 1.0000000 1.500000 0.0000000 0.7071068
#> 11 chr1:7-10 d 0.2500000 1.500000 0.3535534 0.7071068
#> 12 chr1:11-14 d 1.0000000 1.000000 0.0000000 0.0000000
# add names to the regions
names(regions) <- c("A", "B", "C")
summarize_regions(
bedfiles,
regions,
fun = "sum",
columns = 5,
col_names = "coverage"
)
#> [13:21:21.092522] [iscream::summarize_regions] [info] Summarizing 3 regions from 4 bedfiles
#> [13:21:21.092534] [iscream::summarize_regions] [info] using sum
#> [13:21:21.092537] [iscream::summarize_regions] [info] with columns 5 as coverage
#> feature file coverage.sum
#> 1 A a 4
#> 2 B a 3
#> 3 C a 5
#> 4 A b 4
#> 5 B b 1
#> 6 C b 3
#> 7 A c 2
#> 8 B c 3
#> 9 C c NA
#> 10 A d 3
#> 11 B d 3
#> 12 C d 1
# using `feature_col`
library(data.table)
# convert string vector to a data.table
regions_df <- data.table::as.data.table(regions) |>
_[, tstrsplit(regions, ":|-", fixed = FALSE, names = c("chr", "start", "end"))] |>
_[, start := as.integer(start)] |>
_[, feature := LETTERS[.I]][]
regions_df
#> chr start end feature
#> <char> <int> <char> <char>
#> 1: chr1 1 6 A
#> 2: chr1 7 10 B
#> 3: chr1 11 14 C
summarize_regions(
bedfiles,
regions_df,
fun = "sum",
columns = 5,
col_names = "coverage",
feature_col = "feature"
)
#> [13:21:21.106325] [iscream::summarize_regions] [info] Summarizing 3 regions from 4 bedfiles
#> [13:21:21.106342] [iscream::summarize_regions] [info] using sum
#> [13:21:21.106346] [iscream::summarize_regions] [info] with columns 5 as coverage
#> feature file coverage.sum
#> 1 A a 4
#> 2 B a 3
#> 3 C a 5
#> 4 A b 4
#> 5 B b 1
#> 6 C b 3
#> 7 A c 2
#> 8 B c 3
#> 9 C c NA
#> 10 A d 3
#> 11 B d 3
#> 12 C d 1